Classroom Supports:

Drop-In Tutoring Lab Program at Appalachian State University & The Learning Community Program at East Carolina University

Presenters:
Aburi Rote, PhD - University of North Carolina at Asheville
Alison LaGarry-Cahoon, PhD - University of North Carolina at Chapel Hill
Lunch and Learn Series

• **Student Success Innovation Lab**
 - Fund the implementation of promising student success interventions

• **Math Pathways Initiative**
 - Increase retention and completion rates in gateway and entry-level math courses

• **Select third-party evaluators from within the UNC System to:**
 - Partner with practitioners to develop the interventions
 - Analyze outcomes for interventions
 - Develop recommendations for future research
Announcements

• Attendee Engagement
 o Raise Hand: Receive technical assistance
 o Q&A: Submit question about presentation
 o Email: studentsuccess@northcarolina.edu

• Closed Captioning and Live Transcription

• Recorded Webinar: Will receive via link to video and be posted on the SSIL website.
SSIL - Evaluating Classroom Supports

East Carolina University – Pirate Academic Success Center Learning Community Program
• Examined Enrollment impact of the PASC learning community program on sophomore retention at sophomore year, academic performance throughout students’ college career, and years taken to graduate.
• Evaluator: Dr. Aubri Rote, Associate Professor of Health and Wellness, UNC Asheville

Appalachian State University – Drop-In Tutoring Labs Program
• Examined correlation between time spent in the labs and course GPA.
• Explored students’ reasons for participation, perceived and actual benefits received and potential barriers for student learning.
• Evaluator: Dr. Alison LaGarry-Cahoon, Clinical Assistant Professor, School of Education, UNC-Chapel Hill
SUMMATIVE EVALUATION REPORT

East Carolina University
Pirate Academic Success Center Learning Community

Aburi Rote, PhD
University of North Carolina at Asheville
PASC Learning Community Program
Purpose and Experimental Design

• Purpose
 o Examine if students enrolled in ECU’s PASC learning community differ in academic performance, retention at sophomore year, and years taken to graduate compared to a similar group of students not in the PASC learning community

• Experimental Design
 o Observational study - cross-sectional analyses over 5 years

• Data were obtained from ECU’s Institutional Planning, Assessment and Research (IPAR) department
PASC Learning Community Program
Snapshot of Key Findings/Implications

• Academic performance was higher in PASC learning community group vs. comparison group

• Differences did not reach significance for retention or years to graduate

• Several areas for future research
 o Key implication for future - data (what is collected, how it is collected, who can access it)
Who does the PASC Learning Community Program Serve?

• 75-100 students each academic year

• Recruitment efforts focused on admitted student profiles with specific outreach to the lowest test scores and high school grade performance

• Program spans fall and spring semester of freshman year
Learning Communities

The Pirate Academic Success Center is committed to the academic success of ECU students and houses multiple learning communities, called CREWS. PASC CREWs are designed to help you, as a new student, Freshmen or Transfer student, successfully transition to ECU. As a CREW member you will receive academic and college life transition coaching, peer academic success coaching, social and cultural activities, priority tutoring, STARFISH monitoring, enrollment in common classes, and learning center employment opportunities.

By joining a PASC CREW you will receive:

- Academic and college life transition coaching
- Academic peer success coaching services
- Social engagement and cultural activities
- Priority tutoring services
- Starfish early alert monitoring for academic issues
- Enrollment in common coursework
- Learning center employment opportunities

If you are interested in joining our Learning Community, please complete this application.
Who and Where is the PASC Learning Community Program?

• Director - Dr. Elizabeth Coghill and several staff members

• Main center:
 o Open, collaborative learning workspace with numerous worktables and study/tutoring rooms
 o Array of learning tools (screens, white boards, etc.)

• At the time of this report, the PASC learning community program had acquired the level below their current level
 o Welcome/wait room, common area, offices
 o Private, quiet rooms for peer mentoring/tutoring or study skill appointments for students who need a quieter space
East Carolina University – PACS’s Learning Community Program

Methods

• Participants
 o PACS Learning Community (n=281)
 o Comparison group (n=512)

• Measures (data from AY 2014-2015 to 2018-2019)
 o GPA for each year and semester
 o Retention at sophomore year of fall semester
 o If students graduated in 3, 4, or 5 years

• Statistical Analyses
 o Independent t-tests - compare GPA per semester by group
 o Two-proportion z-tests - compare retention and years to graduate by group
East Carolina University – PACS’s Learning Community Program
GPA by Semester for PASC vs. Comparison Group

[Graph showing GPA by semester for PASC vs. Control, marked with asterisks for significance]
East Carolina University – PACS’s Learning Community Program
Comparison of Sophomore Retention by Group

• **PASC Learning Community**
 - 88.3% of students retained at sophomore year

• **Comparison Group**
 - 83.3% of students retained at sophomore year

• **Not statistically significant, potentially still meaningful**
 - Equates to an additional 14 students retained by sophomore year among PASC Learning Community group
East Carolina University – PACS’s Learning Community Program
Comparison of Years to Graduate by Group

• No statistically significant differences by group

• Graduated in 3 years
 - PASC Learning Community - 11.9%
 - Comparison Group - 11.8%

• Graduated in 4 years
 - PASC Learning Community - 73.8%
 - Comparison Group - 74.5%

• Graduated in 5 years
 - PASC Learning Community - 14.3%
 - Comparison Group - 13.7%
East Carolina University – PACS’s Learning Community Program
Implications - Practitioners

• Higher levels of academic performance among PASC students demonstrate the potential of programs that assist incoming students needing additional support.

• Data on the efficacy of programs is key for continued support and development of the program.
 o Hiring a data/research specialist for your team
 o Connecting with faculty on campus to serve in this role
 o Partnering with institutional research units on campus
East Carolina University – PACS’s Learning Community Program

Implications - Researchers

• Great potential for future studies on these programs.

• Fostering connections with institutional research units on campus is key.

• Other data to consider
 o Data tracking the same students over entire academic career
 o Data on perceived barriers to taking part in the program
 o Measures of mental and emotional health (baseline assessments could occur via surveys at freshmen orientation)
 o Data on outcomes post-graduation
East Carolina University – PACS’s Learning Community Program

Implications - Policymakers

• Though retention did not reach significance, still potential
 o 14 additional students were retained by sophomore year among PASC Learning Community group.
 o Data on more students may reveal more.

• Policies around data are warranted.
 o Data may be pulled on different days (e.g., all data pulled on census day would be helpful).
 o Some programs include withdrawals while others exclude withdrawals.
 o Access to data can be challenging.
Acknowledgements

Dr. Elizabeth Coghill

Amber Arnold

ECU Institutional Planning, Assessment and Research (IPAR)
Margot Neverett

Tonya Walton

Shun Robertson
SUMMATIVE EVALUATION REPORT
Appalachian State University Drop-In Tutoring Labs

Alison LaGarry-Cahoon, PhD
University of North Carolina at Chapel Hill
Initiative Description

• Learning Lab Drop-In Tutoring for:
 ◦ Biology, Business Math, Business (COB), Computer Science, General Math, Geological and Environment Science, Physics

Disco SLC Learning Labs

<table>
<thead>
<tr>
<th>BIO</th>
<th>BusMath</th>
<th>COB</th>
<th>CS</th>
<th>GenMath</th>
<th>GES</th>
<th>PHY</th>
</tr>
</thead>
</table>

Biology Learning Lab

For more information, contact University Tutorial Services at apputs@appstate.edu or 828-262-3060

Drop-in tutoring via Zoom is available for:
- BIO 1201, 1202, 1801, 1802, 2001, 2012, 2300, 2400, 2600, 3302, 3312, and 3800

The Biology Learning Lab is intended to provide additional support to students in Biology classes. Students can work individually or with others, and can request help from tutors as needed. The Learning Lab is a great place to ask questions or for you to simply have a good learning environment. Please note that tutors are not allowed to help with graded work, but they can help you understand concepts.
Initial Problem Statement

• Why do students elect to attend tutoring sessions at the Drop-In Learning Labs?
• What barriers exist for student learning, and how might the SLC and Learning Labs work to mitigate these barriers?
• In what ways do the Learning Labs help and/or benefit students who attend tutoring sessions?
Short-Term Evaluation (Ad-Hoc)

• This ad-hoc program evaluation provided the opportunity to examine the initiative and currently available data sources. Results provide a launch point for a long-term, comprehensive evaluation.

• Thus, this evaluation study is neither experimental, nor quasi-experimental.
Snapshot of Findings

• Student Experience and Success
 o Tutors are highly-valued, and experience with tutors is directly tied to student satisfaction and success.

• Data Infrastructure to Support and Document Student Success and Access
 o In preparing to better assess effectiveness of the Drop-In Tutoring program, additional data should be collected.
Research Design

• Mixed Methods Evaluation
 o *Quantitative Data Analyzed*: Course GPA and total Hours at Tutoring for all Learning Lab Attendees; Attendee Responses to Survey Items (n=53)
 o *Qualitative Data Analyzed*: Attendee Responses to Open-Ended or Short-Response Survey Items

NOTE: The survey sample is not representative of ASU student demographics – particularly in terms of race/ethnicity. This leads to possible further research examining WHO accesses the learning labs, and what that means in terms of assessing/reducing potential barriers.
Participant GPA in Relation to Hours at Tutoring

Table 1: Pearson’s Product-Moment Correlation Co-efficient (r) results

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>N (cases)</th>
<th>sig. (if significant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL DATA (Fall 2018, Fall 2019)</td>
<td>.0301</td>
<td>1438</td>
<td>n/a</td>
</tr>
<tr>
<td>FALL 2018</td>
<td>.068</td>
<td>596</td>
<td>n/a</td>
</tr>
<tr>
<td>FALL 2019</td>
<td>.004</td>
<td>842</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 2: Total Visits and Total Hours

<table>
<thead>
<tr>
<th></th>
<th>Total Visits</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 2018</td>
<td>1889</td>
<td>2614</td>
</tr>
<tr>
<td>Fall 2019</td>
<td>2745</td>
<td>4137</td>
</tr>
</tbody>
</table>

There was not a significant correlation between Course GPA and Hours at Tutoring for data sets from Fall 2018 or Fall 2019.
Subject Specific Results

Table 3: Tests for Correlation Between Course GPA and Total Hours at Tutoring

<table>
<thead>
<tr>
<th>Subject</th>
<th>r</th>
<th>N (cases)</th>
<th>sig. (if significant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology Learning Lab</td>
<td>.046</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Chemistry Learning Lab</td>
<td>-.057</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>COB Learning Lab</td>
<td>.081</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Computer Science Learning Lab</td>
<td>.074</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Mathematics Learning Lab</td>
<td>-.018</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>Physics Learning Lab</td>
<td>.234**</td>
<td>126</td>
<td>.008</td>
</tr>
</tbody>
</table>

**Correlation is significant at the .01 level (2-tailed)

When disaggregated by subject, only Physics Learning Lab showed a significant correlation between Course GPA and Total Hours at Tutoring.
Survey Results

• How would you rate your experience with Drop-In Tutoring Programs at ASU:
 o MEAN RATING 4.17
 • 1=Extremely Dissatisfied
 • 5=Extremely Satisfied

Table 5: Response to Q11 – How did you decide that you needed to attend tutoring sessions?

<table>
<thead>
<tr>
<th>Top Reasons for Attending Tutoring</th>
<th>Responses</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>I was struggling to keep up with the course content</td>
<td>31</td>
<td>34.4%</td>
</tr>
<tr>
<td>My best learning is done when I can have someone explain things to me individually</td>
<td>24</td>
<td>26.7%</td>
</tr>
<tr>
<td>I have used tutoring in the past and found it to be helpful to my learning</td>
<td>18</td>
<td>20%</td>
</tr>
<tr>
<td>My grades were too low</td>
<td>9</td>
<td>10%</td>
</tr>
<tr>
<td>The professor suggested that I seek additional help</td>
<td>4</td>
<td>4.4%</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>4.4%</td>
</tr>
</tbody>
</table>
It was a surprise to see that the majority of students surveyed accessed tutoring at a time when their perceived grade was in the range of A-B+.

Table 4: Response to Q13 – What was your approximate course grade when you decided to seek out tutoring?

<table>
<thead>
<tr>
<th>Approximate Grade</th>
<th>Responses</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>28.6%</td>
</tr>
<tr>
<td>A-</td>
<td>3</td>
<td>7.1%</td>
</tr>
<tr>
<td>B+</td>
<td>10</td>
<td>23.8%</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>7.1%</td>
</tr>
<tr>
<td>B-</td>
<td>3</td>
<td>7.1%</td>
</tr>
<tr>
<td>C+</td>
<td>5</td>
<td>12.0%</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>4.8%</td>
</tr>
<tr>
<td>C-</td>
<td>1</td>
<td>2.4%</td>
</tr>
<tr>
<td>D+</td>
<td>3</td>
<td>7.1%</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>
Findings in Two Primary Areas

• Student Experience and Success
• Data Infrastructure to Support and Document Student Success and Access
The Importance of Tutors

• Tutors were highly-valued.
• Students noted they would sign up for a session knowing a particular tutor would be present.
 o “Kyle just really knows how to explain this stuff so that I can understand.”
 o “Sammi is so patient with me. I move so slowly with this material, and she doesn’t judge.”
• Students noted when a particular tutor wasn’t a good fit.
 o “Casey couldn’t seem to break things down for me. I felt like they were judging me. I stopped going to them.”
Suggested Future Research Questions

• In what ways do effective tutors work to help increase student understanding and achievement?
• What qualifications, experiences, dispositions, and content knowledge are necessary for tutors to be effective?
Suggested Improvements in Data Infrastructure

- Collection of additional data point - “Approximate course grade when student decides to seek out tutoring”
- More focused data collection around peer tutor dispositions, qualifications, experiences.
- Further refine a program logic model or theory of change (particularly considering leadership changes)
Implications

General:

• Student success is a nuanced and complex concept. Data infrastructure must attend to this complexity.
 o Data agreements with institutional research
 o Appropriate online management systems
 o Inclusion of student voice (interviews, focus groups, surveys, etc.)
Implications for Practitioners

• Include student/peer tutors in our collective vision of *practitioners* of student support.

• Hiring for student support – peer or staff – should seriously consider appropriate knowledge, skills, and dispositions desired for tutors.

• Appropriate training and professional development could address calibration and capacity improvement for tutors.
Implications for University Policymakers

• Logistics and streamlined processes are vital in allowing students to easily access supports.
 - Online registration
 - Ex. Increased/changed hours in response to move online

• A program logic model/theory of change is a useful tool to help university committees ensure that policy is responsive to process and vice versa.
Implications for Researchers

• Inclusion of student voice in data is vital to understanding the complexities of student learning supports.

• More qualitative data collection could help in parsing out student perception of barriers to access, etc.
 o Individual Interviews, Focus Groups

• Robust data collection mechanisms do not guarantee the availability of the “right” data.
 o Qualitative data analysis can reveal opportunities for additional meaningful data points to be collected.
Acknowledgements

Student Support Innovation Lab
The University of North Carolina System

Shun Robertson
Tonya Walton
The University of North Carolina System

Lee Cope
Katharine Johnson
Appalachian State University

UNC-Chapel Hill School of Education
Lunch and Learn Series

February 24 Advising 2.0: Measuring the impact of an Academic Case Manager at UNC Asheville

March 12 Evaluating Classroom Supports: Drop-In Tutoring Lab Program at Appalachian State University & the Learning Community Program at East Carolina University

March 26 Living & Learning Communities at North Carolina A&T State University

April 27 Removing Barriers to Access: Completion Grants Across Four UNC System Institutions

Register, Access Presentations, and Replay Webinars

Contact Us
studentsuccess@northcarolina.edu
THANK YOU
EVALUATING CLASSROOM SUPPORTS:
DROP-IN TUTORING LAB PROGRAM AT APPALACHIAN STATE UNIVERSITY &
THE LEARNING COMMUNITY PROGRAM AT EAST CAROLINA UNIVERSITY
SESSION PRESENTERS

Dr. Aubrianne Rote is Chair and Associate Professor in the Health and Wellness Department at UNC Asheville. Dr. Rote teaches courses on chronic disease, body image, exercise science as well as currently oversees the senior capstone experience for Health and Wellness majors at UNC Asheville. Dr. Rote’s research areas include decreasing weight bias and improving body image. In addition, due to Dr. Rote’s passion for teaching, she also conducts research examining novel pedagogical strategies. Dr. Rote has also served as a Fellow with UNC Asheville’s Center for Teaching and Learning and the Chair of UNC Asheville’s Faculty Welfare and Development Committee where she focused on improving leadership development on campus and increasing equity in a variety of dimensions for faculty across campus.

Dr. Alison LaGarry-Cahoon is a Clinical Assistant Professor in the School of Education at The University of North Carolina at Chapel Hill. Dr. LaGarry-Cahoon’s evaluation and consultation portfolio spans a broad range of areas, from K-12 arts-based school reform initiatives, to curricular partnerships between colleges and the manufacturing industry. Her work prioritizes qualitative research methodologies, as well as conceptual frameworks that center on equity-focused educational practices. She grounds her work in 10+ years of experience as an educator in K-16 education settings.