A new coating for textile fibers shows promise for efficiently capturing toxic industrial chemicals and chemical warfare agents under real-world conditions, including high humidity. The research could lead to improved masks and personal protective equipment for soldiers and others at risk of exposure.

Researchers at North Carolina State University and the U.S. Army’s Combat Capabilities Development Command Chemical Biological Center (CCDC CBC) developed functional textiles that neutralized a blistering agent simulant under conditions of 80 percent relative humidity. The new coating also captured ammonia gas, a commonly produced industrial chemical in the U.S.

“For more than a century, we’ve had threats from chemical warfare agents, from chlorine and mustard gas in World War I to recent attacks against civilians in Syria,” says Dennis T. Lee, a recent Ph.D. recipient at NC State and lead author of an article about the work. “We need to find ways to capture and chemically break down toxic gases for practical, better-performing protective equipment.”

Researchers worked with metal-organic frameworks (MOFs) – coatings that are synthesized over microfibers. There are two significant challenges. The first lies in creating MOFs that can remain stable in the presence of moisture while holding the hazardous compounds in a thin film, a process known as adsorption/absorption. The second is achieving a coating that’s effective in degrading toxic chemicals.

Read More

Originally published April 4, 2019.