For years, one of the largest obstacles facing the field of regenerative medicine – the science of growing new human parts from scratch – was the need to create a circulatory system to support new tissues and organs as they grew. Now two researchers from North Carolina State University and the University of North Carolina at Chapel Hill are being recognized for creating technology to make the customized blood vessels necessary to support tissue generation.

Your blood vessels are amazing. Altogether, the average adult has about 60,000 miles of blood vessels in his or her body. These vessels – and the blood they move – are absolutely essential. Without the oxygen and nutrients they provide, your organs and tissues would die. Without its effective (and efficient) ability to transfer substances throughout the body, your immune system wouldn’t work. Basically: no blood vessels, no life.

The smallest of your blood vessels – your microvasculature – are particularly important. They account for about 50,000 miles of your circulatory system. They’re everywhere. And they have, historically, been very, very difficult to recreate.

This is where Frances Ligler and Michael Daniele come in.Image of the artificial microvasculature made using Ligler and Daniele’s technique. Image credit: Michael Daniele. Click to enlarge.

In the early 2000s, while a researcher at the U.S. Naval Research Laboratory (NRL), Ligler developed and patented devices and a technique for creating and shaping continuous fibers on the micron scale. For frame of reference, a single hair on your head is between 40 and 50 microns – or micrometers – wide. Ligler’s advance allows users to create the fibers out of any polymer that can be made quickly. But that’s not all.

Read more about NC State and UNC-CH research.

Tags

Accessibility options

Interface
Adjust the interface to make it easier to use for different conditions.
This renders the document in high contrast mode.
This renders the document as white on black
This can help those with trouble processing rapid screen movements.
This loads a font easier to read for people with dyslexia.